x^2-2/x^2+2(x+1/x)=3-x/x+3x^2-9x+1

Simple and best practice solution for x^2-2/x^2+2(x+1/x)=3-x/x+3x^2-9x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-2/x^2+2(x+1/x)=3-x/x+3x^2-9x+1 equation:



x^2-2/x^2+2(x+1/x)=3-x/x+3x^2-9x+1
We move all terms to the left:
x^2-2/x^2+2(x+1/x)-(3-x/x+3x^2-9x+1)=0
Domain of the equation: x+3x^2-9x+1)!=0
x∈R
Domain of the equation: x^2!=0
x^2!=0/
x^2!=√0
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x^2-(3-x/x+3x^2-9x+1)-2/x^2+2(+x+1/x)=0
We multiply parentheses
x^2-(3-x/x+3x^2-9x+1)-2/x^2+2x+2x=0
We get rid of parentheses
x^2-3x^2+x/x+9x-2/x^2+2x+2x-3-1=0
Fractions to decimals
x^2-3x^2-2/x^2+9x+2x+2x-3-1+1=0
We multiply all the terms by the denominator
x^2*x^2-3x^2*x^2+9x*x^2+2x*x^2+2x*x^2-3*x^2-1*x^2+1*x^2-2=0
We add all the numbers together, and all the variables
-3x^2+x^2*x^2-3x^2*x^2+9x*x^2+2x*x^2+2x*x^2-2=0
Wy multiply elements
-3x^2+x^4-3x^4+9x^3+2x^3+2x^3-2=0
We do not support expression: x^4

See similar equations:

| x2+3x+8=0 | | z*7+5=4 | | 12x=6x+24 | | 2n^2+3n-12=-3 | | 5x+6=2x+18 | | x²-9x+20=0 | | 4n^2-10n+2=-2 | | 5(x-6=-20 | | 5x=4x+14 | | 3x+273=360 | | 2n^2-n-8=-2 | | -6-n+2n^2=0 | | x+2x/3=18 | | y-5y/7=6 | | 12b^2-36b+30=3 | | x(x-2)=9-2x | | X/2+3+2x=17-x | | 3k^2-9k-84=0 | | 4x+x+x-3+x-1=5+x+x | | (3x-1)(2x+2)=0 | | n+2=( | | 20=5c=+10 | | 7=9g-(3+g) | | .84*x=1635 | | (21/25)x=1635 | | 9x16^2=0 | | (x-1)÷5-(4-x)÷2=0 | | 17=125-9x | | 1635.57=(.84*x) | | 15=3a-3 | | 4(2x+5)=3(2-4x) | | x+7-(2x+8)=3x |

Equations solver categories